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Even more category theory
• Continuing the theme of the previous two lectures, I want to give you more 

examples of how category theory leads to deep insight into familiar problems


• Monads and categorical probability


• Kan extensions


• Lifting diagrams: universal structure for specifying computation 


• We will construct universal representers in non-symmetric metric spaces using the 
powerful Yoneda Lemma


• We will construct novel types of generative AI models based on Yoneda “integral 
calculus” of coends and ends. 



Kan Extensions and Monads



Every concept is a Kan Extension

• Kan extensions are a fundamental universal construction in category 
theory 

• Every other concept can be derived from Kan extensions!  

• Foundational result (unlike ML work on extending functions in sets) 

• There are only two canonical ways to extend a functor!



Consider the case when category C is a subcategory of D 

Left Kan extensions represent one of only two canonical solutions





Category of directed graphs


Monad: transitive closure 

Category of measurable spaces 


Probabilities are monads!



Probabilities are codensity monads



 Giri monad maps a measurable space 

X to the space of all distributions on X

It is a monad since all distributions on 

X is also measurable! 



Lifting Diagrams







Figure source: Spivak, Database queries and constraints as lifting problems 



Is solvable!




Do Kan Complexes exist?

• Yes: the simplicial category has a topological realization as a Kan complex


• Each n-simplex is mapped into a topological n-simplex of all n-tuples that 
sum to 1



Generative AI and Kan Complexes

Figure Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Every morphism


invertible!



Diffusion Process and Kan Complexe

https://yang-song.net/blog/2021/score/



Integral Calculus for Generative AI



Two profound ideas by Yoneda
• Yoneda Lemma (1954): 


• Objects can be characterized by their interactions


• Yoneda embedding: 


• Co (ends) of bi-functors (1960): 


• Bifunctors 


• Category of (co)wedges defined by dinatural transformations between bifunctors


• Coends are initial objects in a category of cowedges


• Ends are final objects in a category of wedges

C( − , x) : Cop → Set

F : Cop × C → D









Generalized Metric Spaces
• A generalized metric space (gms) is defined as a space X, where


• 


• 


• Triangle inequality: 


• Note: in a gms, symmetry does not hold, and two objects that are at 
distance 0 need not be identical

X(x, y) : X × X → [0,∞]

X(x, x) = 0

X(x, z) ≤ X(x, y) + X(y, z)



Examples: gms over Preorders
• Let us define a gms over a preordered set 


• Reflexivity: 


• Transitivity: 


• The gms is defined as


• 


•

(P, ≤ )

x ≤ x

x ≤ y, y ≤ z ⇒ x ≤ z

If x ≤ y, then P(x, y) = 0

If x ≰ y, then P(x, y) = ∞



Example: gms over strings

• Consider the set of strings 


• We can define a gms over the strings  as follows:


• 


•

Σ* over some alphabet Σ

Σ*

Σ*(x, y) = 0 if x is a prefix of y

Σ*(x, y) = 2−n otherwise where n is the longest common prefix



Example: gms over topological spaces

• We can define a gms over the power set  of all subsets over a metric 
space as: 


• 


• This distance is referred to as the non-symmetric Hausdorff distance

𝒫(X)

𝒫(X)(V, W) = inf (ϵ > 0 |∀v ∈ V, ∃w ∈ W s.t. X(v, w) ≤ ϵ)



Example: gms over distances
• Let us define a gms over the category  of non-negative distances:


• 


• 


• This category is complete and co-complete, symmetric monoidal, as well as compact 
and closed


• Product of two elements is their max (or supremum)


• Coproducts of two elements is their minimum (or infimum) 


• Monoidal product is defined as addition +

[0,∞]

[0,∞](x, y) = 0 if x ≥ y

[0,∞](x, y) = y − x if x < y



Compact Closed Categories

• Let us define an “internal” Hom functor  as simply the 
distance in  as given previously 


• The Yoneda embedding  is right adjoint to 



• Theorem: For all 


•

[0,∞]( − , − )
[0,∞]

[0,∞](t, − )
t + − for any t ∈ [0,∞]

r, s, t ∈ [0,∞],

t + s ≥ r if and only if s ≥ [0,∞](t, r)



Metric Yoneda Lemma for gms
• We can construct “universal representers” in any gms by applying the Yoneda 

Lemma


• Let X be any gms. For any element 


• 


• Let us define a category over gms by using as arrows all non-expansive functions 


• 


• Where 

x ∈ X

X( − , x) : Xop → [0,∞] : y ↦ X(y, x)

f

Y( f(x), f(y)) ≤ c ⋅ X(x, y)

c ∈ (0,1)



Presheaves in a gms
• For any category 


• In particular, the presheaf for the category of gms is given as


• 


• Which defines the set of all non-expansive functions from  to 


• Remarkably, the Yoneda embedding  is itself a non-
expansive mapping, and therefore  an element of 

C, define its presheaf Ĉ = SetC
op

X̂ = [0,∞]Xop

Xop [0,∞]

y ↦ [0,∞](y, x)
X̂



Metric Yoneda Lemma
• For any non-expansive function 


• 


• The Yoneda embedding is an isometry! 

•  

•  

• Recall we have made no assumptions about symmetry!

ϕ ∈ X̂

X̂(X( − , x), ϕ) = ϕ(x)

y(x) = X( − , x)

X(x, y) = X̂(y(x), y(y)) = X̂(X( − , x), X( − , y))



Non-symmetric Attention in LLMs

• Recall that Tranformer modules compute permutation-equivariant maps 
because attention matrices are symmetric! 


• To fix that problem, a Transformer uses Absolute Positional Encoding


• But, that “fix” causes problems of generalization in long sequences


• Conjecture: Yoneda embeddings in a gms may lead to new insights into 
attention in LLMs 





The “true logic” of Generative AI   
lies in the Calculus of (Co)Ends

∫C
F(c, c) ∫

c
F(c, c)















The “Geometric” Transformer Model

Intuition: Construct a simplicial set of of Transformers by 
composing sequences of length n 

Embed them in a Kan complex





Summary
• In these three lectures, we constructed a (higher-order) category theory of 

generative AI, named GAIA


• Our goal was primary theoretical: we want to illustrate how category 
theory can give deep insight into hard practical problems


• Implementing GAIA is a problem for future work!


• Energy crises are plaguing generative AI — any solution is worth 
considering! 


• Read my book drafts (continually updated) on my UMass  web page



GAIA: Generative AI Architecture 

Beyond Deep Learning!


