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Even more category theory

Continuing the theme of the previous two lectures, | want to give you more
examples of how category theory leads to deep insight into familiar problems

Monads and categorical probabillity
Kan extensions
Lifting diagrams: universal structure for specifying computation

We will construct universal representers in non-symmetric metric spaces using the
powerful Yoneda Lemma

We will construct novel types of generative Al models based on Yoneda “integral
calculus” of coends and ends.



Kan Extensions and Monads




Every concept Is a Kan Extension

« Kan extensions are a fundamental universal construction in category
theory

 Every other concept can be derived from Kan extensions!
 Foundational result (unlike ML work on extending functions in sets)

 There are only two canonical ways to extend a functor!



Definition 30. A left Kan extension of a functor / : C — €& along another functor £ : C — D, is a func-
tor Lang F : D — & with a natural transformation 7 : F' = Lanp o K such that for any other such pair
(G :D — &,v: F = GK), v factors uniquely through 7. In other words, there is a unique natural transformation
« : Lanyp = G.
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Consider the case when category C is a subcategory of D

Left Kan extensions represent one of only two canonical solutions



Definition 31. A right Kan extension of a functor / : C — & along another functor £ : C — D, 1s a functor
1 : Ranp o K — F with a natural transformation 7 : Lang o K' = F such that for any other such pair (G': D — &, :
GK = F), v factors uniquely through n. In other words, there is a unique natural transformation « : G = Ranp.
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Definition 32. A monad on a category C' consists of
* Anendofunctorl': C — C
* A unit natural transformationn : 1¢ = 1

» A multiplication natural transformation . : T% — T

such that the following commutative diagram in the category C'“ commutes (notice the arrows in this diagram are
natural transformations as each object in the diagram 1s a functor).

Category of directed graphs

73 y 2

Monad: transitive closure
pd 1

T2 m , T

Category of measurable spaces
R Ll y T2 G T —_

Probabilities are monads!
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Probabilities are codensity monads

Definition 33. A codensity monad 7~ of a functor F is the right Kan extension of F along itself (if it exists). The
codensity monad inherits the university property from the Kan extension.
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Abstract

The Giry monad on the category of measurable spaces sends a space to a space of all
probability measures on it. There is also a finitely additive Giry monad in which
probability measures are replaced by finitely additive probability measures. We give
a characterisation of both finitely and countably additive probability measures in
terms of integration operators giving a new description of the Giry monads. This is
then used to show that the Giry monads arise as the codensity monads of forgetful

functors from certain categories of convex sets and affine maps to the category of
measurable spaces,

Giri monad maps a measurable space

X to the space of all distributions on X

It Is a monad since all distributions on

X 1s also measurable!



Lifting Diagrams




Definition 17. Let C be a category. A lifting problem in C is a commutative diagram o in C.

H

A > X
i
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Definition 18. Let C be a category. A solution to a lifting problem in C is a morphism /i : B — X in C satisfying
poh =vand ho f = u as indicated in the diagram below.
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The unreasonable power of the lifting property in
elementary mathematics

misha gavrilovich*
in memoriam: evgenii shurygin

0 May 2017

instances of human and animal behavior [...] miraculously complicated,
...] they have little, if any, pragmatic (survival /reproduction) value.
...] they are due to internal constraints on possible architectures of
unknown to us funectional "mental structures”.

Gromov, Ergobrain

Abstract

We illustrate the generative power of the lifting property (orthogonality of
morphisms in a category) as a means of defining natural elementary mathe-
matical concepts by giving a number of examples in various categories, in par-
Licular showing thai many standard elementary notions ol abstract Lopology
can be delined by applying the lifling property to simple morphisims of flinile
topological spaces. Examples in topology include the notions of: compact,
discrete, connected, and totally disconnected spaces, dense image, induced
topology, and separation axioms. Iixamples in algebra include: finite groups
being nilpotent, solvable, torsion-free, p-groups, and prime-to-p groups. injec-
tive and projective modules; injective, surjective, and split homomorphisms.

DATABASE QUERIES AND CONSTRAINTS VIA LIFTING
PROBLEMS

DAVID 1. SPIVAK

ABSTRACT. Previous work has demonstrated that categories are useful and
expressive models for databases. In the present paper we build on that model,
showing that certain queries and constraints correspond to lifting problems, as
found in modern approaches to algebraic topology. In our formulation, each
so-called SPARQL graph pattern query corresponds to a category-theoretic
lifting problem, whereby the set of solutions to the query is precisely the set of
lifts. We interpret constraints within the same formalism and then investigate
some basic properties of queries and constraints. In particular, to any database
7 we can associate a certain derived database Qry(w) of queries on 7. As an
application, we explain how giving users access to certain parts of Qry(mw),
rather than direct access to 7, improves ones ability to manage the impact of
schema evolution.

CONTENTS

Introduction

Elementary theory of categorical databases
Constraints via lifting conditions

Queries as lifting problems

The category of queries on a database

. Future work
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FIGURE 3. A topological lifting problem
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Figure source: Spivak, Database queries and constraints as lifting problems



Definition 24. Let f : X — S be a morphism of simplicial sets. We say f 1s a Kan fibration if, for each n > (), and
each 0 < 72 < n, every lifting problem.
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|s solvable!



Do Kan Complexes exist?

* Yes: the simplicial category has a topological realization as a Kan complex

 Each n-simplex is mapped into a topological n-simplex of all n-tuples that
sum to 1

.. A

O-simplex 1-simplex 2-simplex 3-simplex




Generative Al and Kan Complexes

Diffusion models: X0l— X1 - X0 > - Z

Gradually add Gaussian - - - -« - - -—--————-- “«-——————
noise and then reverse

Every morphism

Invertible!

Figure Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Diffusion Process and Kan Complexe
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Integral Calculus for Generative Al



Two profound ideas by Yoneda

 Yoneda Lemma (1954):

* Objects can be characterized by their interactions
e Yoneda embedding: C( — ,x) : C? — Set
* Co (ends) of bi-functors (1960):
e Bifunctors F: CP’ X C — D
» Category of (co)wedges defined by dinatural transformations between bifunctors

 Coends are initial objects in a category of cowedges

 Ends are final objects in a category of wedges



/
\

Initial Object

A covariant functor F

its category of elements [ F' ~ / C(c,—) ~c/C

has an initial object

is representable iff

/
\

Final Object

\
J

A contravariant functor F

is representable iff

its category of elements [ F =~ / C(—,c)

has a final object



Theoretical
Computer Science
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Fundamental Study

Generalized metric spaces: Completion, topology,
and powerdomains via the Yoneda embedding
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Abstract

Generalized metric spaces are a common generalization of preorders and ordinary metric spaces
(Lawvere, 1973). Combining Lawvere’s (1973) enriched-categorical and Smyth’s (1988, 1991)
topological view on generalized metric spaces, it is shown how to construct (1) completion, (2)
two topologies, and (3) powerdomains for generalized metric spaces. Restricted to the special
cases of preorders and ordinary metric spaces, these constructions yield, respectively: (1) chain
completion and Cauchy completion; (2) the Alexandroff and the Scott topology, and the ¢-ball
topology; (3) lower, upper, and convex powerdomains, and the hyperspace of compact subsets.
All constructions are formulated in terms of (a metric version of) the Yoneda (1954) embedding.
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Generalized Metric Spaces

* A generalized metric space (gms) is defined as a space X, where
¢ X(x,y): XXX — |0,00]
e X(x,x)=0
» Triangle inequality: X(x, z) < X(x,y) + X(y, 2)

 Note: In a gms, symmetry does not hold, and two objects that are at
distance 0 need not be identical



Examples: gms over Preorders

 Let us define a gms over a preordered set (P, < )
o Reflexivity: x < x
o Transitivity: x <y, y<z=>x<7Z
» The gms is defined as
e If x <y, then P(x,y)=0

e If x £y, then P(x,y) = o©



Example: gms over strings

» Consider the set of strings 2* over some alphabet 2
« We can define a gms over the strings 2* as follows:
o 2%(x,y) =0 if x is a prefix of y

e 2*(x,y) = 27" otherwise where n is the longest common prefix



Example: gms over topological spaces

» We can define a gms over the power set S(X) of all subsets over a metric
space as:

« PX)V,W)=inf(e>0|VveV,Iwe Wst X(v,w) <€)

* This distance is referred to as the non-symmetric Hausdorff distance



Example: gms over distances

 Let us define a gms over the category [0,00] of non-negative distances:
e [0,00](x,y)=0ifx>y
* [0,00]Cr,y) =y —xifx <y

* This category is complete and co-complete, symmetric monoidal, as well as compact
and closed

* Product of two elements is their max (or supremum)
* Coproducts of two elements is their minimum (or infimum)

 Monoidal product is defined as addition +



Compact Closed Categories

o Let us define an “internal” Hom functor [0,00]( — , — ) as simply the
distance in [0,00] as given previously

* The Yoneda embedding [0,00](?, — ) is right adjoint to
t+ — forany t € [0,00]

o Theorem: Forallr,s,t € [0,00],

e t+ s >rifandonlyif s > [0,00](2, 1)



Metric Yoneda Lemma for gms

* \We can construct “universal representers” in any gms by applying the Yoneda
Lemma

« Let X be any gms. For any element x € X
e X(—,x): X7 —> [0,00] : vy~ X(y,Xx)
o Let us define a category over gms by using as arrows all non-expansive functions f

e Y(f(x),f(y) <c-X(x,y)

e Where c € (0,1)



Presheaves In a gms

e For any category C, define its presheaf C = Set¢”

* In particular, the presheaf for the category of gms is given as

A\

¢« X =[0,00]*"
» Which defines the set of all non-expansive functions from X to [0,00]

» Remarkably, the Yoneda embedding y — [0,00](y, x) is itself a non-
expansive mapping, and therefore an element of X



Metric Yoneda Lemma

 For any non-expansive function ¢ & X

.« X(X(—,x), ) = p(x)

 The Yoneda embedding is an isometry!

* y(X) :X( N ,X)

e X(x,y) = X(y(x), y()) = X(X( =, %), X(—,))

* Recall we have made no assumptions about symmetry!



Non-symmetric Attention in LLMs

 Recall that Tranformer modules compute permutation-equivariant maps
because attention matrices are symmetric!

* Jo fix that problem, a Transformer uses Absolute Positional Encoding
o But, that “fix” causes problems of generalization in long sequences

* Conjecture: Yoneda embeddings in a gms may lead to new insights into
attention in LLMs



“The true logic of

this world lies in the ’ .
calculus of probabilities” o TR
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The “true logic” of Generative Al
lies in the Calculus of (Co)Ends
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Coends

Topological data analysis
Manifold learning

Bifunctors F : C? xC —= D / \

Ends

Distances in generalized metric spaces \ /

Probabilistic Generative Models



Definition 26. Given a pair of bifunctors F. G : C°? x C — D, a dinatural transformation is defined as follows:



Definition 28. Given a fixed bifunctor £’ : C°? x C — D, we define the category of wedges VV (') where each object

is a wedge Ay = F and given a pair of wedges Ay = F and A, = F, we choose an arrow [ : d — d’ that makes the
following diagram commute:

d/

v

Ple.c)

Analogously, we can define a category of cowedges where each object is defined as a cowedge F' = Aj.

Definition 29. Given a bifunctor ' : C°? x C — D, the end of F' consists of a terminal wedge w : end(F') = F'. The
objectend(F') € D is itself called the end. Dually, the coend of F' is the initial object in the category of cowedges
F = coend(F'), where the object coend(F') € D is itself called the coend of F'.




Definition 65. The geometric realization | X | of a simplicial set X is defined as the topological space

X|=]| | Xpx A"/ ~
n. 20

where the n-simplex X, 1s assumed to have a discrete topology (i.e., all subsets of X,, are open sets), and A" denotes
the topological n-simplex

A" ={(po,....pn) ER"T 0P <1,) pi=1



The spaces A™. n = 0 can be viewed as cosimplicial topological spaces with the following degeneracy and face maps:

()‘Q;(t(), i@ g ,tn) — (?f(), sxcarea ,t,;_l,(),t,;, s ,fn) for () < /] N

(_Tj(?f(),. i ,tn) = (t(),. i ,tj —I-fJ 14583 ?tn) for 0 < 2 )

Note that §; : R™ — R"T!, whereas o; : R — R"~1,

The equivalence relation ~ above that defines the quotient space 1s given as:

(dz‘(;’)ﬁ.‘), (to, boe ,tn,)) S (LL', ()};(tg, . o ,tn))

(3.'7 (LL’), (tU? & atn)) ~ (&, ZE (tD? %)



Topological Embeddings as Coends

We now bring in the perspective that topological embeddings can be interpreted as coends as well. Consider the functor

F: A% x A — Top

where

F([’I’L]? [lr n-']) — X'n X A'm.

where F acts contravariantly as a functor from A to Sets mapping [n| — X,,, and covariantly mapping |m| — A™ as
a functor from A to the category Top of topological spaces.



The “Geometric” Transformer Model

/ (Transformergyn) - An

Intuition: Construct a simplicial set of of Transformers by
composing sequences of length n

Embed them in a Kan complex



Universal Universal representers : F(¢, —), F(—, ¢)
Iggﬁ:fsn (Co)end : /F(c, c), / | F(e,c)
Participants in Participants adapt
steady state during interactions
il Nonstationary
/ \
Generalized _ Incremental Random
metric ~ Codensity adaptation variation
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v ]
Dynamic Evolutionary
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Kernels, in the limit, Y by natural inequalities

manifolds, PAC learning RL) selection

t;‘r’ggs:t Generative Well-founded Non-well-founded

Al sets, initial algebras sets, final coalgebras

Universal representers

in generalized G : B — Meas
metric spaces

[Meas(A,GB),GB| = P(A)
J B




Summary

In these three lectures, we constructed a (higher-order) category theory of
generative Al, named GAIA

Our goal was primary theoretical: we want to illustrate how category
theory can give deep insight into hard practical problems

Implementing GAIA is a problem for future work!

Energy crises are plaguing generative Al — any solution is worth
considering!

Read my book drafts (continually updated) on my UMass web page



GAIA: Generative Al Architecture

Beyond Deep Learning!




